Virginia Community College Course Content Summary

Course Title: BIO 270 - General Ecology

Course Description

Studies interrelationships between organisms and their natural and cultural environments with emphasis on populations, communities, and ecosystems. Lecture 3 hours. Lab and recitation 3 hours. Total 6 hours per week. 4 credits.

General Course Purpose

This is a one semester course designed to build upon the student's understanding of the basic principles and concepts of ecology attained in prerequisite courses. It serves as a lab science option. It is intended to prepare students for majors level coursework in ecology and evolution.

Course Prerequisites/Corequisites

Any two of the following prerequisites: BIO 101, BIO 102, BIO 110, BIO 120

Course Objectives

Upon completing the course, the student will be able to:

Scientific Literacy

Critically evaluate readings to determine their validity and relevance.

Quantitative reasoning

- Perform accurate calculations, interpret scientific data and graphs, and use results to support conclusions.
- Analyze data collected through experiments in lab. Present and discuss the findings and conclusions derived from data, with chart/spreadsheet and graphs.
- Use mathematical models to simulate ecological interactions and make predictions. Interpret graphs and tables generated by the models.

Critical thinking

 Discriminate among degrees of credibility, accuracy, and reliability of inferences drawn from given data. Determine when conclusions are supported by the information provided.

Introduction to Ecology and Evolution

- Explain science as a way of knowing about the world. Compare and contrast ecology, environmental science, and environmentalism.
- Explain how ecologists using scientific methods to study the world at different levels of interaction.
- Explain the general trends in the physical environment on Earth (e.g., latitude, elevation, seasons, convection currents).
- Compare and contrast the major terrestrial and aquatic biomes found on Earth.
- Explain the concept of a niche.
- Compare and contrast different modes of evolution.
- Explain how mathematical models can be used by ecologists.
- Use the Hardy-Weinberg principle to determine whether a population is evolving

(To be assigned by the VCCS)

Physiological and Behavioral Ecology

- Explain the difference between conformers and regulators, including advantages/disadvantages of each approach.
- Compare and contrast the ways organisms deal with temperature.
- Compare and contrast the ways organisms deal with water availability.
- Compare and contrast the ways organisms deal with energy availability.
- Compare and contrast the ways organisms deal with nutrient availability.
- Compare and contrast the ways organisms interact socially.

Population Ecology

- Explain how ecologists measure size and density of various populations.
- Use a life table to understand and make predictions about a population.
- Compare and contrast various models of population growth.
- Compare and contrast the three types of survivorship curves.
- Explain density-dependent and density-independent effects.
- Explain how life history theory is applied to population ecology.
- Explain how populations may be better modeled as metapopulations.

Population Interactions

- Describe the difference between fundamental and realized niches.
- Compare and contrast various outcomes of niche overlap.
- Describe the competitive exclusion principle.
- Use competition models to show how the outcome of competition depends on characteristics of the species and the environment.
- Use predator-prey models to make
- Compare and contrast functional responses.
- Describe strategies employed by species (predators/prey, herbivores/plants, and parasites/hosts) in consumptive relationships.
- Explain mutualism, including when such a relationship would be likely to be an evolutionary stable strategy.

Community Ecology

- Explain how ecologists measure diversity within a community.
- Interpret a rank abundance curve.
- Calculate species diversity.
- Explain the concept of species succession and relate it to the biomes discussed in Unit 1.
- Explain the role of disturbance, stability, and resilience in ecological succession.
- Explain how the theory of island biogeography applies to community ecology.

Ecosystem Ecology

- Explain the various roles in a food web.
- Compare and contrast the movement of energy and nutrients through a food web.
- Compare and contrast primary and secondary productivity.
- Compare and contrast competition and apparent competition.
- Explain how indirect relationships affect species within a community.

(To be completed by VCCS)	Course Approved:	Month	Year

(To be assigned by the VCCS)

- Explain the concept of keystone species.
- Compare and contrast bottom-up and top-down control in a community.
- Explain the concept of a trophic cascade.

Conservation Ecology

- Explain the reason that ecologists may be concerned with anthropogenic changes.
- Explain how overharvesting can lead to species extinction.
- Explain the role of habitat loss on ecological communities.
- Explain the role of pollution on species extinction.
- Explain how anthropogenic climate change affects ecosystems.
- Explain how invasive species disrupt communities.
- Explain how the theory of island biogeography can be applied to terrestrial landscapes.
- Apply ecological principles to human populations.

Major Topics to be Included

Introduction to Ecology and Evolution
Physiological and Behavioral Ecology
Population Ecology
Population Interactions
Community Ecology
Ecosystem Ecology
Conservation Ecology

(To be completed by VCCS)	Course Approved:	Month	Year